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Presentation

1 Internship from March to July 2011

2 Image analysis for diagnostic assistance

3 Previous work : state of the art

4 Programming language : Python 2.7
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Image content understanding : sequential approach

↙↓↘

t = 1 t = 2 t = 3 Union
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Problem statement

How to represent and use non quantitative informations for image content
understanding ?

1 e.g. vessels are not included in bones ⇒ topology

2 e.g. vessels are more bright than liver ⇒ photometry

⇒ ⇒
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What about state of the art ?

Image interpretation with a priori conceptual knowledges

Example : topological (e.g A include B), relative distance (e.g. A close to B),
relative position (e.g. A is left to B)

1 Not common in image interpretation
2 Nature

- Quantitative (e.g. distance, intensity) 1

- Non quantitative (e.g. inclusion, intersection) 2

3 Representation as graph 3

- Contextual addition : active node 2

Contribution

Sequential approach with topological and photometrical knowledges.

1. [3] C. Hudelot, J. Atif, and I. Bloch, Fuzzy spatial relation ontology for image interpretation, Fuzzy Sets and
Systems, 2008

2. [2] J.-B. Fasquel, V. Agnus, An interactive medical image segmentation system based on the optimal man-
agement of regions of interest, Computer Methods and Programs in Biomedicine, 2006

3. [1] A. Deruyver, Y. Hodéb, and L. Brun, Image interpretation with a conceptual graph, Arti�cial Intelligence,
2009
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Steps

Representation

1 Knowledge (conceptual information)

2 Segmentation process (contextual information)

Formalization (inference engine)

1 Region of interest (topology)

2 Number of classes (photometry)

3 Class ordering (photometry)

Evaluation

1 Synthetic images

2 Clustering algorithm

3 Method's bene�ts quanti�cation

Application

1 Medical images

2 Cluster identi�cation

3 Windowing for volume rendering
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Topology & photometry (conceptual informations)

Graph

1 Nodes are regions (e.g 0, 1, A, B, liver, tumor)

2 Edges are relations (e.g. include, less bright than)
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Segmentation process modeling (contextual informations)

Add contextual information to the previous graph

1 Active node = type is segmented

2 Non active node = type is not segmented

Date t = 0

A A

B

A
⇒

Date t = 1

A A

B

B
⇒

Date t = 2

A A

B
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From the optimal region of interest...

Optimal Region Of Interest 1

Rt(u) =

 ⋃
l∈G−1T,t (u)

Xt(l)

 ∪

 ⋃
i∈St |u∈G−∞T,t (i)

Xt(i)

 (1)

Example

A

C

ROI

Rt(D) = Xt(Ā)
Rt(D) = Xt(A) \ Xt(C)

1. [2] J.-B. Fasquel, V. Agnus, Computer Methods and Programs in Biomedicine, 2006
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... to the number of classes

List of classes ⇔ lobes in the histogram

Lt(u) =
{
i ∈
(
G∞T (G−1T ,t(u)) ∩ (S \ St)

)
|
(
G−1T ,t(i) ∩ G−1T ,t(u) 6= ∅

)}
∪ G−1T ,t(u)

(2)

Example

A E B C D F

A

C

Cardinality

A priori number of classes in the ROI :
Nt(u) = |Lt(u)|
Nt(D) = |Lt(D)| = |B,E ,D,A|
Nt(D) = 4

Identi�cation

Ordering by photometry :
Ot(u) = ord{Lt(u)}
Ot(D) = ord{B,E ,D,A}
Ot(D) = {A,E ,B,D}
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Results

Conclusion

1 Not easy as it seems
2 Limit of the study for the number of classes

- Segmentation of a type in once ⇒ no multiplicity
- Types are all in the image ⇒ no optionality
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Presentation

Which evaluation protocol ?

Di�culties

1 Choice of the clustering algorithm

2 Procedure (contextual information)

3 Data (e.g. noise, brightness, region)

Evaluation

1 K-Means clustering

2 Synthetic images
3 Bene�ts of knowledge

- Reduction of polluting data and volume
- K-Means parameterization
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Clustering algorithm

Study limited to only one clustering algorithm to illustrate each bene�ts.

K-Means

1 A widely used clustering algorithm �the simplicity and computational speed
of the K-means algorithm [...] has made it a popular choice� 1

2 Initialization parameters (k, centroid) �the algorithm needs initializing
values which greatly in�uence its terminating optimal solution ... good
initialization is crucial for �nding globally optimal partitionings� 1

⇒ ⇒

1. [4] Anna D. Peterson Ranjan Maitra and Arka P. Ghosh. , A systematic evaluation of di�erent methods for
initializing the k-means clustering algorithm, Computer Methods and Programs in Biomedicine, 2010
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ROI + number of classes ⇒ reduction of polluting data and volume

4 classes

⇒

D
⇒

2 classes

⇒ D
⇒

ROI improve e�ciency and save time.
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Number of classes ⇒ K-Means parameterization

No a priori number of clusters 1
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1. [5, Ray - 1999] S Ray and R H Turi, Determination of number of clusters in k-means clustering ..., Advances
in Pattern Recognition and Digital Techniques, 2007 25 / 39
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Number of classes + ordering = centroids ⇒ K-Means parameterization
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Presentation

1 Visualization only : less restrictive than segmentation

2 Preliminary results for two use cases

3 Medical image from IRCAD 1 database (ground truth)

1. IRCAD : Institut de Recherche contre les Cancers de l'Appareil Digestif
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Context

t = 0

t = 1

⇒

A priori knowledges

Acquisition

Liver

Acq. Liver

Inference engine

1 Number of classes = 3

2 Ordering = tumor < liver < vessel
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Clustering and windowing for tumor

Windowing for tumor
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Clustering and windowing for vessel

Windowing for vessel
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Conclusion

Results

1 Generic method for image understanding

2 Non quantitative ⇒ adaptability
3 Constraints :

1 Perfectly segmented masks
2 Complete graph completion

Re�nements

1 N type value to handle multiplicity and optionality

2 Node fully included by successors

Personal

1 Very pleasant job (research, tools)

2 Formalization is not easy

3 The best part just started
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Fuzzy spatial relation ontology for image interpretation.
Fuzzy Sets and Systems, 159 :1929�1951, 2008.
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A systematic evaluation of di�erent methods for initializing the k -means
clustering algorithm.
Computer Methods and Programs in Biomedicine, 2010.
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